7,567 research outputs found

    Spin injection across magnetic/non-magnetic interfaces with finite magnetic layers

    Full text link
    We have reconsidered the problem of spin injection across ferromagnet/non-magnetic-semiconductor (FM/NMS) and dilute-magnetic-semiconductor/non-magnetic-semiconductor interfaces, for structures with \textit{finite} magnetic layers (FM or DMS). By using appropriate physical boundary conditions, we find expressions for the resistances of these structures which are in general different from previous results in the literature. When the magnetoresistance of the contacts is negligible, we find that the spin-accumulation effect alone cannot account for the dd dependence observed in recent magnetoresistance data. In a limited parameter range, our formulas predict a strong dd dependence arising from the magnetic contacts in systems where their magnetoresistances are sizable.Comment: 6 pages, 3 eps figs. (extended version- new title + two new figures added

    Spin Currents Induced by Nonuniform Rashba-Type Spin-Orbit Field

    Full text link
    We study the spin relaxation torque in nonmagnetic or ferromagnetic metals with nonuniform spin-orbit coupling within the Keldysh Green's function formalism. In non-magnet, the relaxation torque is shown to arise when the spin-orbit coupling is not uniform. In the absence of an external field, the spin current induced by the relaxation torque is proportional to the vector chirality of Rashba-type spin-orbit field (RSOF). In the presence of an external field, on the other hand, spin relaxation torque arises from the coupling of the external field and vector chirality of RSOF. Our result indicates that spin-sink or source effects are controlled by designing RSOF in junctions.Comment: 3 figure

    Mechanisms of spin-polarized current-driven magnetization switching

    Full text link
    The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accumulation and have comparable magnitudes

    Current driven switching of magnetic layers

    Full text link
    The switching of magnetic layers is studied under the action of a spin current in a ferromagnetic metal/non-magnetic metal/ferromagnetic metal spin valve. We find that the main contribution to the switching comes from the non-equilibrium exchange interaction between the ferromagnetic layers. This interaction defines the magnetic configuration of the layers with minimum energy and establishes the threshold for a critical switching current. Depending on the direction of the critical current, the interaction changes sign and a given magnetic configuration becomes unstable. To model the time dependence of the switching process, we derive a set of coupled Landau-Lifshitz equations for the ferromagnetic layers. Higher order terms in the non-equilibrium exchange coupling allow the system to evolve to its steady-state configuration.Comment: 8 pages, 2 figure. Submitted to Phys. Rev.

    Spin accumulation induced resistance in mesoscopic ferromagnet/ superconductor junctions

    Get PDF
    We present a description of spin-polarized transport in mesoscopic ferromagnet-superconductor (F/S) systems, where the transport is diffusive, and the interfaces are transparent. It is shown that the spin reversal associated with Andreev reflection generates an excess spin density close to the F/S interface, which leads to a spin contact resistance. Expressions for the contact resistance are given for two terminal and four terminal geometries. In the latter the sign depends on the relative magnetization of the ferromagnetic electrodes.Comment: RevTeX 10 pages, 4 figures, submitted to Phys.Rev. Let

    Basic obstacle for electrical spin-injection from a ferromagnetic metal into a diffusive semiconductor

    Get PDF
    We have calculated the spin-polarization effects of a current in a two dimensional electron gas which is contacted by two ferromagnetic metals. In the purely diffusive regime, the current may indeed be spin-polarized. However, for a typical device geometry the degree of spin-polarization of the current is limited to less than 0.1%, only. The change in device resistance for parallel and antiparallel magnetization of the contacts is up to quadratically smaller, and will thus be difficult to detect.Comment: Revtex, 4 pages, 3 figures (eps), Definition of spin pilarization changed to standard definition in GMR, some straight forward algebra removed. To appear as PRB Rap. Comm. August 15t

    Post-transplant obesity impacts long-term survival after liver transplantation

    Get PDF
    Background: Short-term survival after orthotopic liver transplantation (OLT) has improved over the past decades, but long-term survival remains impaired. The effects of obesity on long-term survival after OLT are controversial. Because pre-transplant body mass index (BMI) can be confounded by ascites, we hypothesized that post-transplant BMI at 1 year could predict long-term survival. Methods: A post-hoc analysis was performed of an observational cohort study consisting of adult recipients of a first OLT between 1993 and 2010. Baseline BMI was measured at 1-year post-transplantation to represent a stable condition. Recipients were stratified into normal weight (BMI 30 kg/m2). Kaplan-Meier survival analyses were performed with log-rank testing, followed by multivariable Cox proportional hazards regression analysis. Results: Out of 370 included recipients, 184 had normal weight, 136 were overweight, and 50 were obese at 1-year post-transplantation. After median follow-up for 12.3 years, 107 recipients had died, of whom 46 (25%) had normal weight, 39 (29%) were overweight, and 22 (44%) were obese (log-rank P = 0.020). Obese recipients had a significantly increased mortality risk compared to normal weight recipients (HR 2.00, 95% CI 1.08–3.68, P = 0.027). BMI was inversely associated with 15 years patient survival (HR 1.08, 95% CI 1.03–1.14, P = 0.001 per kg/m2), independent of age, gender, muscle mass, transplant characteristics, cardiovascular risk factors, kidney- and liver function. Conclusion: Obesity at 1-year post-transplantation conveys a 2-fold increased mortality risk, which may offer potential for interventional strategies (i.e. dietary advice, lifestyle modification, or bariatric surgery) to improve long-term survival after OLT

    Thermally driven spin injection from a ferromagnet into a non-magnetic metal

    Get PDF
    Creating, manipulating and detecting spin polarized carriers are the key elements of spin based electronics. Most practical devices use a perpendicular geometry in which the spin currents, describing the transport of spin angular momentum, are accompanied by charge currents. In recent years, new sources of pure spin currents, i.e., without charge currents, have been demonstrated and applied. In this paper, we demonstrate a conceptually new source of pure spin current driven by the flow of heat across a ferromagnetic/non-magnetic metal (FM/NM) interface. This spin current is generated because the Seebeck coefficient, which describes the generation of a voltage as a result of a temperature gradient, is spin dependent in a ferromagnet. For a detailed study of this new source of spins, it is measured in a non-local lateral geometry. We developed a 3D model that describes the heat, charge and spin transport in this geometry which allows us to quantify this process. We obtain a spin Seebeck coefficient for Permalloy of -3.8 microvolt/Kelvin demonstrating that thermally driven spin injection is a feasible alternative for electrical spin injection in, for example, spin transfer torque experiments
    • …
    corecore